TMD evolution in CSS

John Collins (Penn State)

BNL workshop, Feb 8, 2016 1/14

Basic parton model inspiration: Case of Drell-Yan at $q_T \ll Q$

- $q_{\mathsf{T}}(\mathsf{leptons}) = \sum k_{\mathsf{T}}(\mathsf{quarks})$
- ullet Use parton distribution in x and ${m k}_{\sf T}$
- Same intuition applies to hadron distribution in jets, assisted by data, e.g.,
 - $-e^{+}e^{-} \rightarrow (\text{jet}_{1} + \text{jet}_{2} \rightarrow) h_{1} + h_{2} + X,$
 - $-ep \rightarrow h + X$,
 - $pp \rightarrow (\text{jet}_1 + \text{jet}_2 + X \rightarrow) \ h_1 + h_2 + X$ with high p_T jets and almost back-to-back hadrons. (Warning: factorization failure in QCD.)
- But parton model needs to be substantially modified in QCD

Summary

- 1. (TMD) factorization
- 2. Evolution equations à la CSS
- 3. Non-perturbative part
- 4. Consequences
- 5. Danger/opportunity areas

TMD factorization for DY in QCD at $q_T \ll Q$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^4 q \,\mathrm{d}\Omega} \simeq \frac{2}{s} \sum_{j} \frac{\mathrm{d}\hat{\sigma}_{j\bar{\jmath}}(Q, \mu \mapsto Q)}{\mathrm{d}\Omega} \int e^{i\boldsymbol{q}_{\mathsf{T}} \cdot \boldsymbol{b}_{\mathsf{T}}} \, \tilde{f}_{j/A}(x_A, \boldsymbol{b}_{\mathsf{T}}; Q^2, Q) \, \tilde{f}_{\bar{\jmath}/B}(x_B, \boldsymbol{b}_{\mathsf{T}}; Q^2, Q) \, \mathrm{d}^2 \boldsymbol{b}_{\mathsf{T}}$$

for unpolarized $p + p \rightarrow (\gamma^*(q) \rightarrow \mu^+\mu^-) + X$, with $q = x_A P_A + x_B P_B + q_T$.

- Hard scattering $d\hat{\sigma}$: perturbative
- TMD pdfs with 2 scale arguments . . .
- Extras:
 - Can add in polarization terms (Sivers, Boer-Mulders)
 - Need Y term (or . . .) to combine with collinear factorization at larger q_{T}

Old v. new CSS

- Originally (CSS, 1982, 1985):
 - Factorization into $H \times S \times \mathsf{pdf} \times \mathsf{pdf}$. (H = ``hard'' factor; S = ``soft'' factor.)
 - Reorganized for one process (mainly unpolarized DY) to combine S and H with pdfs, effectively.
 - Presented results in terms of parameterized "non-perturbative" functions, and parts involving perturbative quantities
- New (JCC, 2011)
 - Full proofs.
 - Better definitions of TMD functions.
 - With S incorporated into TMD functions
 - Keep H separate, and process dependent.
 - Emphasize presence of TMD functions (including all the spin-dependent ones).

[See JCC & Rogers (in preparation) for relationships.]

Need for evolution from QCD

When s and Q^2 are increased with x_A and x_B fixed:

- wider rapidity range for real and virtual emission
- wider k_{T} range for real emission

Hence q_T distribution broadens.

In TMD factorization, the effects are allowed for in properly defined TMD pdfs.

(Technical long story about Ward identities and Wilson lines!)

Geography of evolution

(Adapted from Landry et al., PRD 67,073016 (2003), Konychev & Nadolsky, PLB 633, 710 (2006))

Evolution (CSS and RG)

Use definitions of TMD pdfs with effective cut offs on

- rapidity of unobserved real emission; parameter $\zeta = M^2 x^2 e^{2(y_p y_{\rm cut-off})}$
- transverse momentum of virtual lines; parameter μ

Evolution on
$$\zeta$$
:
$$\frac{\partial \ln \hat{f}_{f/H}(x, b_{\mathsf{T}}; \zeta; \mu)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_{\mathsf{T}}; \mu)$$

Combine with RG equations to get:

$$\begin{split} \frac{\mathrm{d} \ln \tilde{f}_{f/H}(x, b_{\mathsf{T}}; Q^2; Q)}{\mathrm{d} \ln Q} &= \gamma(\alpha_s(Q)) - \int_{Q_0}^Q \frac{\mathrm{d} \mu}{\mu} \gamma_K(\alpha_s(\mu)) + \tilde{K}(b_{\mathsf{T}}; Q_0), \\ &= \gamma(\alpha_s(Q)) - \int_{\mu_b}^Q \frac{\mathrm{d} \mu}{\mu} \gamma_K(\alpha_s(\mu)) + \tilde{K}(b_{\mathsf{T}}; \mu_b), \end{split}$$

Evolution kernel $K(b_T, \mu)$ is strongly universal: independent of x, Q, flavor, type of TMD function.

Non-perturbative information is in

- Ordinary pdfs (via small- b_T OPE).
- Large b_T TMD pdfs: "intrinsic transverse momentum".
- $\tilde{K}(b_{\mathsf{T}},\mu)$ at large b_{T}

Segregation of non-perturbative information à la CSS

For evolution

$$\begin{split} \frac{\mathrm{d} \ln \tilde{f}_{f/H}(x,b_{\mathsf{T}};Q^2;Q)}{\mathrm{d} \ln Q} &= \gamma(\alpha_s(Q)) - \int_{\mu_b}^Q \frac{\mathrm{d} \mu}{\mu} \gamma_K(\alpha_s(\mu)) + \tilde{K}(b_{\mathsf{T}};\mu_b) \\ &= \gamma(\alpha_s(Q)) - \int_{\mu_{b_*}}^Q \frac{\mathrm{d} \mu}{\mu} \gamma_K(\alpha_s(\mu)) + \tilde{K}(b_*;\mu_{b_*}) - g_K(b_{\mathsf{T}};b_{\mathrm{max}}) \end{split}$$

where smooth cutoff on perturbative part is $b_* = b_{\rm T}/\sqrt{1+b_{\rm T}^2/b_{\rm max}^2}$

Similarly for TMD functions at large b_T , with $e^{-g_{j/A}(x,b_T)}$ factor.

Fits for $g_{j/A}$ and g_K can also allow for incomplete perturbative information.

Picturing segregation of non-perturbative information

For evolution

$$\frac{\mathrm{d}\ln\tilde{f}_{f/H}(x,b_{\mathsf{T}};Q^2;Q)}{\mathrm{d}\ln Q} = \gamma(\alpha_s(Q)) - \int_{\mu_{b_*}}^Q \frac{\mathrm{d}\mu}{\mu} \gamma_K(\alpha_s(\mu)) + \tilde{K}(b_*;\mu_{b_*}) - g_K(b_{\mathsf{T}};b_{\mathrm{max}})$$

• N.B. (RG improved) pert. calc. agrees with KN to $b_{\rm T} \simeq 2\,{\rm GeV}^{-1}$

Solutions for TMD pdfs

With maximal perturbative information

$$\begin{split} \tilde{f}_{j/H}(x, \pmb{b}_{\mathsf{T}}; Q^2, Q) &= \exp \left[-g_{j/A}(x_A, b_{\mathsf{T}}; b_{\max}) - g_K(b_{\mathsf{T}}; b_{\max}) \ln \frac{Q}{Q_0} \right] \\ &\times \exp \left\{ \tilde{K}(b_*; \mu_{b_*}) \ln \frac{Q}{\mu_{b_*}} + \int_{\mu_{b_*}}^{Q} \frac{\mathrm{d}\mu'}{\mu'} \left[\gamma_j(a_s(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_K(a_s(\mu')) \right] \right\} \\ &\times \sum_{j_A} \int_{x_A}^{1} \frac{\mathrm{d}\xi}{\xi} f_{j_A/H}(\xi; \mu_{b_*}) \; \tilde{C}_{j/j_A}^{\mathrm{PDF}} \left(\frac{x}{\xi}, b_*; \mu_{b_*}^2, \mu_{b_*}, a_s(\mu_{b_*}) \right). \end{split}$$

In terms of TMD function at Q_0 :

$$\begin{split} \tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathsf{T}}; Q^2, Q) &= \tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathsf{T}}; Q_0^2, Q_0) \times \exp\left\{\int_{Q_0}^Q \frac{\mathrm{d}\mu'}{\mu'} \left[\gamma_j(a_s(\mu'); 1) - \ln\frac{Q}{\mu'} \gamma_K(a_s(\mu'))\right]\right\} \\ &\times \exp\left\{\ln\frac{Q}{Q_0} \left[-g_K(b_{\mathsf{T}}; b_{\mathrm{max}}) + \tilde{K}(b_*; \mu_{b_*}) - \int_{\mu_{b_*}}^{Q_0} \frac{\mathrm{d}\mu'}{\mu'} \gamma_K(a_s(\mu'))\right]\right\} \\ &= \mathrm{func.}(b_{\mathsf{T}}) \times \mathrm{func.}(Q) \times \left(\frac{Q}{Q_0}\right)^{\mathrm{func.}(b_{\mathsf{T}})} \end{split}$$

The meaning of $\tilde{K}(b_{\mathsf{T}})$

 $\tilde{K}(b_{\mathsf{T}},Q=2\,\mathrm{GeV})$:

 $b_{\mathsf{T}}\text{-space DY}$:

Black: KN, BLNY

Blue, red: new parameterizations

$$\tilde{K}(b_T; Q = 2 \, \text{GeV})$$
0.5

-0.5

-1.0

-1.5

-1.5

-2.0

Our parametrization
$$b_{max} = 1.5 \, \text{GeV}^1$$
-0.b, no g_k

$$b_{max} = 0.5 \, \text{GeV}^1$$
-0.b do no g_k

$$b_{max} = 1.5 \, \text{GeV}^1$$
-0.b do no g_k
-0.c do no

$$\frac{\mathrm{d}\ln\tilde{f}_{f/H}(x,b_{\mathsf{T}};Q^2;Q)}{\mathrm{d}\ln Q} = \gamma(\alpha_s(Q)) - \int_{Q_0}^{Q} \frac{\mathrm{d}\mu}{\mu} \gamma_K(\alpha_s(\mu)) + \tilde{K}(b_*;Q_0)$$

What happens at large b_T ?

 \bullet With standard parameterizations, large b_{T} asymptote of " b_{T} cross section" and pdfs is

coeff.
$$\times e^{-b_{\mathsf{T}}^2[\mathsf{coeff}(x) + \mathsf{const} \ln(Q^2/Q_0^2)]}$$

- At low Q, we get exponent that is too small to agree with data or may even be unphysical (negative).
- JCC & Rogers (PR D91, 074020 (2015)) proposed:
 - Modify parameterization to give constant \tilde{K} at large b_{T} ,
 - while approximately preserving its form around $1.5\,{\rm GeV}^{-1}\sim 0.3\,{\rm fm}$, which dominates fits to DY data

This gives slower evolution at the larger b_T values that are important at lower Q.

- ullet Sun, Isaacson, Yuan & Yuan, arXiv:1406.3073 made fits with $\tilde{K} \propto \ln b_{\rm T}$ at large $b_{\rm T}$. They obtained good agreement with data:
 - Fitted: Tevatron, fixed-target DY.
 - Predicted: SIDIS at HERMES.
 - But they neglected Y term!

Danger/opportunity areas

- Need better formulation of "Y term", with analysis of errors.
- TMD factorization failure in $pp \to ({\rm jet}_1 + {\rm jet}_2 + X \to) \ h_1 + h_2 + X$ etc: Understand the physics better.
- Forward SSA, etc
- Have we correctly analyzed role of non-perturbative physics, especially in hadronization?
- Effects of heavy quarks.
- Generally, in reporting fits, it's important to include
 - actual TMD pdfs (and fragmentation functions)
 - $-\tilde{K}(b_{\mathsf{T}},Q)$
 - as well as the CSS "non-perturbative" functions.